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Abstract. Adaptive agents, playing the iterated Prisoner’s Dilemma (IPD) in a two-dimensional spatial
setting and governed by Pavlovian strategies (“higher success-higher chance to stay”), are used to approach
the problem of cooperation between self-interested individuals from a novel angle: We investigate the effect
of different possible measures of success (MS) used by players to asses their performance in the game.
These MS involve quantities such as: the player’s utilities U , his cumulative score (or “capital”) W , his
neighborhood “welfare”, etc. To handle an imprecise concept like “success” the agents use fuzzy logic. The
degree of cooperation, the “economic demography” and the “efficiency” attained by the system depend
dramatically on the MS. Specifically, patterns of “segregation” or “exploitation” are observed for some MS.
On the other hand, power laws, that may be interpreted as signatures of critical self-organization (SOC),
constitute a common feature for all the MS.

PACS. 89.75.-k Complex systems – 89.20.-a Interdisciplinary applications of physics – 89.65.Gh
Economics; econophysics, financial markets, business and management – 89.75.Fb Structures and
organization in complex systems – 87.23.Ge Dynamics of social systems

Cooperation among individuals is necessary in order to
allow organizational structures that offer important ad-
vantages to them. The problem is that in general, by def-
inition, individuals are self-interested. However, there are
many examples in the animal world of cooperative be-
havior. Furthermore, cooperation seems to be crucial to
explain several landmarks in the evolution of live organ-
isms, from prebiotic chemistry through to the origins of
human societies [1].

A particular useful conceptual playground is the iter-
ated Prisoner’s Dilemma (IPD) game. The PD involves
2 players, each confronting 2 choices, to cooperate (C)
or to defect (D). A 2 × 2 matrix specifies the 4 possible
payoffs for each player: A player who plays C gets the “re-
ward” R or the “sucker’s payoff” S depending if his oppo-
nent plays C or D respectively, while if he plays D he gets
the “temptation to defect” T or the “punishment” P de-
pending if his opponent plays C or D respectively. These
four payoffs obey the relations: T > R > P > S and
2R > S + T . The dilemma is that in any one round, inde-
pendently of what the other player does, D yields a higher
payoff than C.

In general, the problem of how cooperation emerges
and becomes stable is approached from a Darwinian evo-
lutionary perspective. A central concept is the so-called
evolutionary stable strategy (ESS) [2,3]: a strategy which
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if adopted by all members of a population cannot be in-
vaded by a mutant strategy through natural selection. The
evolutionary game theory spread to economics and social
sciences since the early eighties computer tournaments or-
ganized by Axelrod [4]. Different mechanisms have been
proposed to explain the evolution of cooperation. Perhaps
the most popular is direct reciprocity, which requires ei-
ther memory of previous interactions [4] or “tags” [5] per-
mitting cooperators and defectors to distinguish one an-
other. An alternative mechanism proposed in reference [6]
has shown that spatial effects by themselves, in a classic
Darwinian setting, can be sufficient for the evolution of
cooperation.

Here, we consider a system of adaptive agents playing
the IPD, in a two dimensional spatial setting, governed by
a generalization of the strategy of “win-stay, lose-shift”,
known as Pavlov [7], and we explore the effect of using
different measures of success (MS) i.e. criteria to assess
the individual performance in the game. Pavlov’s strategy
seems to be a widespread strategy in nature [8]. In partic-
ular, experiments with humans have shown that a great
fraction of individuals indeed use Pavlovian strategies [9].
Last but not least, Pavlov also has shown its efficiency
when competing with several other strategies [10]. There-
fore, we take Pavlov for granted and we focus on the rich-
ness of different (dynamic) equilibrium or steady states
produced by distinct plausible MS. An approach similar in
spirit, but without spatial structure (players were chosen
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at random) and only considering the simplest Pavlovian
strategy, was proposed recently [11,12].

One of the main criticisms to agent-model approaches
is that these binary and completely deterministic agents
clearly are an over-simplification of real individuals, whose
levels of cooperation exhibit a continuous gamma of val-
ues. We take into account the stochastic component in the
adaptive behavior of real players through the use of fuzzy
logic [13,14] which provides a meaningful representation
of imprecise or vague concepts like “success” in an exact
mathematical manner. In our work the fuzziness enters
through the MS used by the players to assess their degree
of success through a membership function µsuccess which
takes values in the interval [0,1] (0 means complete failure
and 1 complete success). Each player updates his behav-
ior (C or D) as follows: he maintains it with probability
equal to µsuccess.

We want to remark that, although we will employ the
economic parlance and refer to “utilities” and “capital”
as synonyms of the score the players get in each game
and their cumul-ative score respectively, our agents do not
necessarily represent the “homo economicus”. Indeed, the
agents don’t need to be intelligent, as the exciting dis-
covery that virus may also engage in simple two-player
games [15] points out. In biological contexts, the score
might represent the “fitness”.

An arbitrary agent, represented by a square cell with
center at (x, y), will play against some other agent belong-
ing to his neighborhood N(x, y). We associate two vari-
ables to it at time t: a behavioral variable c(x, y; t), equal
to 1 for C-agents or equal to 0 for D-agents, and his
cumulative “capital” or “wealth” W (x, y; t) (the sum of
utilities collected up to time t). c(x, y; t) is updated ac-
cording to a Pavlovian strategy using 4 different MS
(later we will present an example of a more sophisticated
two-level-of-decision strategy that combines different MS):

– Individual utilities IU (ordinary Pavlov). Each player
takes into account just his utilities U (R, S, T or P ) in
the last round. We choose µIU (T ) = 1, µIU (R) = 2/3,
µIU (P ) = 1/3 and µIU (S) = 0.

– Individual capital IC. Each player compares his capi-
tal W (x, y; t) with an average capital 〈W 〉. Two possi-
bilities are considered:
– ICL: 〈W 〉 ≡ W av

N i.e. the average is performed over
the set of cells (x, y) ∪ N(x, y)

– ICG: 〈W 〉 ≡ W av i.e. 〈W 〉 is the global mean cap-
ital – averaged over all cells.

– Neighbourhood welfare NW : compares W av
N with

W av.

For the last 3 MS, if Wmax and Wmin are the maxi-
mum and minimum capital among the Nag agents [16],
the membership function is thus chosen as:

µ(X) = 1 if (Wmax + 〈W 〉)/2 < X

µ(X) = 2/3 if 〈W 〉 < X ≤ (Wmax + 〈W 〉)/2

µ(X) = 1/3 if (Wmin + 〈W 〉)/2 < X ≤ 〈W 〉

µ(X) = 0 if X ≤ (Wmin + 〈W 〉)/2

where X ≡ W (x, y) (X ≡ WN ) for measures of suc-
cess ICL and ICG (for meassure of success NW ) and
〈W 〉 ≡ W av

N (〈W 〉 ≡ W av) for measure of success ICL

(ICG and NW ).
It turns out that different MS lead to different equilib-

rium fractions of C-agents ceq, different spatial distribu-
tions of c and W and different “economic efficiencies”.

All simulations were carried out according the follow-
ing a standard procedure. All the players adopt the same
strategy and same measure of success. The initial state
at t = 0 is taken as C and D chosen at random for each
cell i.e. the initial fraction of cooperators c is equal to 0.5.
The population varied form Nag = 2, 500 (50× 50 lattice)
to 1 000 000 (1000×1000 lattice). We use periodic bound-
ary conditions. We consider evolution over Ns = 400 lat-
tice sweeps (τ = 1 000 000 to 400 000 000). The grid is
swept sequentially starting at t = 0 by the agent located
at cell (x = 1, y = 1) and at each time step the agent
at (x, y) plays the PD only with one of his nearest neigh-
bors chosen at random. We considered the von Neumann
neighborhood (z = 4 neighbor cells, the cell above and
below, right and left from a given cell). On average each
agent plays two times per lattice sweep (one for sure plus
another one with each of his z neighbors with probabil-
ity 1/z). Therefore the average capital accumulated dur-
ing Ns lattice sweeps is given by U × 2 × Ns, where U
denotes the average utilities per round. The payoff matrix
we consider is:

M =

[
(1, 1) (−2, 2)

(2,−2) (−1, 1)

]

i.e. R = 1 = −P and T = 2 = −S. The state of play-
ers is updated after every pairwise game, i.e. we have an
asynchronous cellular automata [17].

We compute different quantities that provide rele-
vant information about the states in which the sys-
tem self-organizes. The simplest ones are: the fraction
of C-agents c(t) and the average capital W av(t). Spatial
fluctuations of wealth are measured through the 2-point
correlation function G

(2)
W (r) ≡ 〈W (n)W (n + r)〉 −

〈W (n)〉 〈W (n + r)〉 (averages are over all positions n ≡
(x, y)). The size distribution of clusters of C-agents
(D-agents) NC(s) (ND(s)), and of agents with W over
W av, NW (s) are also measured. In order to detect tem-
poral correlation, during transients, the time behavioral
self-correlation Gc(t) was measured and the power spec-
trum P (f) (the absolute value of its Fourier transform)
computed.

Once equilibrium has been reached, the transitions
from D to C, on average, must equal those from C to D.
In the case of measure IU this leads to a simple algebraic



H. Fort and N. Pérez: Economic demography in fuzzy spatial dilemmas and power laws 111

Fig. 1. Histograms for temporal averaged c (right column) and average W (left column). (a) & (b) IU, (c) & (d) ICL, (e) &
(f) IC G and (g) & (h) NW. The c and W histograms for measures IC L and IC G are multi-peaked. The c histograms exhibit
two peaks, one of them at c = 0 – large (very small) for IC L (IC G) (see arrows in Figs. 2c and 2e) –, corresponding to D-agents,
and the other centered around c = 0.5. The peaks of the respective W histograms can be explained in terms of different local
spatial patterns for c (see text).

Table 1. Summary of equilibrium properties for the 4 measures of success.

MS ceq Ueq W histogram c histogram ξW W spatial NC(s) ND(s) NW (s) P (f)

Patterns

IU ∼=0.37 ∼=−0.28 Gaussian Gaussian ∼=0.5 NO (random) s−1.68±0.03 s−1.59±0.02 s−1.52±0.02 f−1.78±0.03

IC L
∼=0.3 ∼=−0.4 6 peaks 2 peaks ∼=2 “Chess board” NO power NO power NO power f−1.79±0.01

patches Law law Law

IC G =0.5− =0− 3 peaks 2 peaks ∼=1 “flowers” s−1.86±0.04 s−1.60±0.02 s−1.67±0.03 f−1.72±0.05

NW =0.5+ =0+ Gaussian Gaussian ∼=0.5 NO (random) s−1.67±0.03 s−1.62±0.03 S−1.53±0.05 f−1.5±0.1

Note: ξW is the correlation length in lattice units obtained from G2
W (r) ≡ 〈W (n) W (n + r)〉 − 〈W (s)〉 〈W (n + r)〉.

equation from which ceq can be computed exactly, giving
ceq

∼= 0.36 which agrees quite well with the asymptotic
value of 0.37 found in simulations and reported in Table 1.
The knowledge of ceq allows to estimate the corresponding
average equilibrium per-capita-utilities as Ueq = 2 ceq −1.
Hence, Ueq is greater (smaller) than zero if ceq is greater
(smaller) than 1/2.

Note the striking differences in the fraction of cooper-
ators and capital distributions between the two IC mea-
sures in Figure 1. The “innocent” change of replacing
the local average capital for the global one as a refer-
ence point to compare the individual wealth has dramatic
consequences. Comparison with a global average – which
comprises much information – produces a more fair (with
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Fig. 2. Asymptotic capital maps for different MS (50×50 sub-
sets of 500×500 lattices): (a) IU, (b) IC L, (c) IC G and (d) NW.
We observe spatial patterns for IC measures, which produce
non Gaussian (multi-peaked) histograms, whilst measures IU
and NW produce random spatial structure.

roughly half of the population above the W = 0 “poverty
line”) and more efficient society (higher W av).

In spite the similarity in efficiency between measures
ICG and NW, the capital distributions are very different.
Something similar happens for the pair IU and ICL.

We found useful a rough classification of agents into
3 “economic classes”: “rich” (“poor”) agents are those
whose capital is greater (smaller) than W av +σW (W av −
σW ), where σW is the standard deviation for W , the rest
constitute the “medium class”. Figure 2 illustrates the
corresponding equilibrium 3-colour “maps” for W (sim-
ilar maps can be generated for c). The IC measures
exhibit complex long lived spatial patterns, reminiscent
of Wolfram’s class IV cellular automata [18] while IU
and NW don’t. The measure ICL gives rise to “patches”
of “chess board” of rich (red) and poor agents (yellow) sep-
arated by medium class agents (blue). On the other hand,
the measure ICG gives rise to “flowers”, with a rich agent
(red) in the center surrounded by 4 poor agents (yellow),
in a sea of medium class (blue).

These spatial patterns are consistent with the respec-
tive W histograms. Specifically, the peaks of the W his-
tograms can be explained in terms of the different stable
neighborhood configurations for the behavioral variable c.
For instance, the right peak at W = 400 (large in Fig. 1d
and small signaled by an arrow in Fig. 1f) corresponds to
a D player surrounded by four players with average c equal
to 1/2. This configuration gives to the central player av-

erage utilities U = (T +P )/2 = 0.5 per game. On average
each agent plays two times per lattice sweep (one for sure
plus another one with each of his z neighbors with prob-
ability 1/z). Therefore the average capital accumulated
during Ns lattice sweeps is given by U × 2 × Ns = 400,
in accordance with Figure 1. In an analogous way all the
other peaks can be explained. The stability of the local
spatial patterns for c depend on the MS. That explain
why the number of peaks for ICL and ICG are different
in Figure 1 (6 vs. 3 peaks).

Figure 3 shows the cluster size distribution NC(s),
ND(s) and NW (s) for the 4 different MS measured for
1000×1000 lattices. Except for MS ICL, these 3 distribu-
tions exhibit power-law scaling, implying thus scale free
phenomena. The absence of power law scaling for ICL is
connected with the underlying chessboard structure; for
instance, from Figure 3b we can see that this MS pro-
duces only very small clusters of C-agents. It is striking
that the exponent for the 3 distributions is roughly the
same (see Tab. 1) [19].

We also found that the scaling of P (f) is consistent
with power law behavior for all MS, this, may be inter-
preted as an additional signature of Self Organized Criti-
cality (SOC).

In addition to combinations of Pavlov plus a simple MS
we studied a two-level of decision strategy with a differ-
ent MS for each level: The first level consists in assessing
preliminarily the performance according to ICL. In a sub-
sequent level, if the player did badly he updates his state
using IU. Otherwise he behaves more nicely and looks for
the combined utilities of both players. Figure 4 shows the
corresponding equilibrium capital map. Note that this dis-
criminating strategy gives rise to a segregation pattern
with clusters of rich C-agents (red) and poor D-agents
(yellow) in a sea of medium class (blue).

Summarizing, the combination of spatial structure and
different MS produces a great diversity of demographic
and spatial patterns. In particular we found: 1) consis-
tent signatures of SOC, at least for 3 of the 4 elemen-
tary considered MS while for the ICL measure mixed
results were found, and 2) that the MS which take into
account the individual wealth lead to well defined eco-
nomic classes (separated peaks in W histograms). The cor-
responding spatial patterns show economic “exploitation”.
The more sophisticated two-level strategy tends to lump
together the rich C-agents and, separated from them, poor
D-agents leading to a higher degree of cooperation and
higher efficiency (higher Ueq). This “segregation” pattern
seems connected with a main issue in Social Sciences like
the formation of social capital, understood as the net-
works and norms of trust and reciprocity that promote
civic cooperation [20]. In particular, it has been argued
that trust and social capital are dominant determinants
of firm size across countries [21]. Our model might serve
to test this hypothesis. This approach, besides its obvious
applications in economics and social sciences, might be
useful in other fields like ecology. The design of devices or
networks, involving many interacting units, that conform
to desired specifications is another possible application.
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Fig. 3. Number of clusters of C-agents (o), D-agents (∗) and agents with W > W av (♦) vs. size of the clusters for different
MS: (a) IU, (b) IC L, (c) IC G and (d) NW.

Fig. 4. Asymptotic capital map for the two level strategy. A
segregation pattern with “islands” of rich C-agents (red) and
“islands” of poor D-agents (yellow) in a sea of medium class
(blue) is clear.
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